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In contrast, the autocorrelation of the
intrinsic noise (/6) decays rapidly: 7, . .
10 min < 1 (Fig. 4E). Thus, the observed
slow fluctuations do not result from intrinsic
noise; they represent noise extrinsic to CFP
expression (see supporting online text). The
concentration of a stable cellular factor would
be expected to fluctuate with a time scale of
the cell cycle period (7, 10). For instance,
even though intrinsic fluctuations in produc-
tion rates are fast, the difference between the
total amounts of YFP and CFP in the
symmetric branch experiments has an auto-
correlation time of 1, ,, = 45 + 5 min (/6). A
similar time scale may well apply to other
stable cellular components such as ribosomes,
metabolic apparatus, and sigma factors. As
such components affect their own expression
as well as that of our test genes, extrinsic
noise may be self-perpetuating.

These data indicate that the single-cell
GREF cannot be represented by a single-valued
function. Slow extrinsic fluctuations give the
cell and the genetic circuits it comprises a
memory, or individuality (29), lasting roughly
one cell cycle. These fluctuations are sub-
stantial in amplitude and slow in time scale.
They present difficulty for modeling genetic
circuits and, potentially, for the cell itself: In
order to accurately process an intracellular
signal, a cell would have to average its
response for well over a cell cycle—a long
time in many biological situations. This
problem is not due to intrinsic noise in the
output, noise that fluctuates rapidly, but rather
to the aggregate effect of fluctuations in other
cellular components. There is thus a funda-
mental tradeoff between accuracy and speed
in purely transcriptional responses. Accurate
cellular responses on faster time scales are
likely to require feedback from their output
(I, 4, 6, 10, 30). These data provide an
integrated, quantitative characterization of a
genetic element at the single-cell level: its
biochemical parameters, together with the
amplitude and time scale of its fluctuations.
Such systems-level specifications are neces-
sary both for modeling natural genetic circuits
and for building synthetic ones. The methods
introduced here can be generalized to more
complex genetic networks, as well as to
eukaryotic organisms (/8).
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Noise Propagation in
Gene Networks

Juan M. Pedraza and Alexander van Oudenaarden®

Accurately predicting noise propagation in gene networks is crucial for
understanding signal fidelity in natural networks and designing noise-tolerant
gene circuits. To quantify how noise propagates through gene networks, we
measured expression correlations between genes in single cells. We found that
noise in a gene was determined by its intrinsic fluctuations, transmitted noise
from upstream genes, and global noise affecting all genes. A model was
developed that explains the complex behavior exhibited by the correlations and
reveals the dominant noise sources. The model successfully predicts the
correlations as the network is systematically perturbed. This approach provides
a step toward understanding and manipulating noise propagation in more

complex gene networks.

The genetic program of a living cell is de-
termined by a complex web of gene networks.
The proper execution of this program relies on
faithful signal propagation from one gene to
the next. This process may be hindered by
stochastic fluctuations arising from gene ex-
pression, because some of the components in
these circuits are present at low numbers, which
makes fluctuations in concentrations un-
avoidable (/). Additionally, reaction rates can
fluctuate because of stochastic variation in the
global pool of housekeeping genes or because
of fluctuations in environmental conditions that
affect all genes. For example, fluctuations in
the number of available polymerases or in any
factor that alters the cell growth rate will
change the reaction rates for all genes. Recent
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experimental studies (2—5) have made sub-
stantial progress identifying the factors that
determine the fluctuations in the expression of
a single gene. However, how expression fluc-
tuations propagate from one gene to the next
is largely unknown. To address this issue, we
designed a gene network (Fig. 1A) in which
the interactions between adjacent genes could
be externally controlled and quantified at the
single-cell level.

This synthetic network (6) consisted of
four genes, of which three were monitored in
single Escherichia coli cells by cyan, yellow,
and red fluorescent proteins (CFP, YFP, and
RFP). The first gene, lacl, is constitutively
transcribed and codes for the lactose repres-
sor, which down-regulates the transcription of
the second gene, fefR, that is bicistronically
transcribed with ¢fp. The gene product of
tetR, the tetracycline repressor, in turn down-
regulates the transcription of the third gene,
reported by YFP. The fourth gene, 7fp, is under
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Fig. 1. (A) A schematic design of the network. (B and C) Average CFP and
YFP expression as a function of IPTG concentration in the steady state.
Each experimental data point was obtained from ~2000 single-cell mea-

surements. The solid lines are fits obtained from the Langevin model expression.

1.4-
1.2
1.0-
0.8
0.6
0.4
0.2-

1.4
1.2
1.0
0.8
0.6
0.4
0.24
1.4
1.2
1.0
0.8
0.6
0.4
0.2

noise
—f A
N=1Cy4

i
r'r“f“'n_rj"r—“*l [ s B k| -0.2

0.4+

correlation

_{Il
Cr

{ e
r'l—r|_|]"'l—| O/ e -0.24

0.8
0.6
0.4
0.2

0.0

SE

e TR

010° 10* 10® 10% 10" 1 10

[[PTG] (mM)

010®° 10™ 10 10% 10" 1

[IPTG] (mM)

10

Fig. 2. (A to C) Coefficient of variation n; = /C; of the expression in genes 1 to 3 as a function of
IPTG concentration in the steady state. (D to F) Correlation between the expression levels of genes 1
and 2, 1 and 3, and 2 and 3, respectively. The solid lines are predictions from the Langevin model (23).

(23). (D) Scatter plot of the fluorescence levels for the entire popu-
lation at [IPTG] = 13 uM. This corresponds to the points marked by the
arrows in (B) and (C). The red lines indicate the average CFP and YFP

the control of the lambda repressor promoter
P,, which is a strong constitutive promoter.

Because this gene is not part of the cascade,
(of globalifluctuations This cascade was used

to measure how fluctuations in an upstream
gene (fetR, reported by CFP) transmit down-
stream (and are reported by YFP). The inducers
isopropyl-B-p-thiogalactopyranoside (IPTG)
and anhydrotetracycline (ATC) bind to and
inhibit the repression of the lactose and tetra-
cycline repressors, respectively, and were
used to tune, respectively, the expression of
the upstream gene and the coupling between
the two genes.

We assayed the response of single cells to
various amounts of inducers by using auto-
mated fluorescence microscopy. In each exper-
imental run, the level of the three fluorescent
reporters was quantified for ~2000 individual
cells. Figure 1B shows that the average signal
of the upstream gene displayed a sigmoidal
response to changes in the concentration of
IPTG in the growth media. In response, the av-
erage signal of the downstream gene (Fig. 1C)
behaved inversely and decreased sharply at
larger IPTG concentrations. The enhanced sen-
sitivity of the YFP response, compared to the
CFP response, when IPTG is varied demon-
strates the utility of cascades for generating
steep switches (7-10). However, the average
expression alone does not capture the pop-
ulation behavior, because the expression of
most cells is quite different from the average
(Fig. 1D). Even for a fixed IPTG concentra-
tion, the fluctuations in gene expression re-
sulted in a broad distribution that reflects the
interaction between the upstream and down-
stream genes.

To quantify the expression fluctuations
and the degree of correlation between differ-
ent genes, we computed the correlation
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Fig. 3. (A) A sketch of the propagation of the fluctuations, showing how the two sources of noise,
intrinsic and global, can result in many components. (B) The logarithmic gain H,, is obtained as
the negative of the slope in log-log space of the mean expression of YFP as a function of mean CFP
expression. (Inset) The square of H,, as a function of IPTG. (C) Noise in the downstream gene (Fig.
2B) decomposed into the different sources of noise. The total noise (black) is the result of the
intrinsic noise in this gene (green), the transmitted noise from the intrinsic fluctuations in

upstream genes (blue), and the global noise (red).

(FF)—(F)X(F)
Cij = —<m,y  from the fluorescence levels

F, in individual cells. The brackets (...) denote
averaging over all cells in the population. and

the indices 7 and j refer to the gene number as
defined in Fig. 1A. Because each cell is
characterized by three different expression val-
ues (F}, F,, and F,), the statistical properties
of this network are summarized by the three
self-correlations, C\,, C,,, and C,;, and the
three cross-correlations, C,,, C|5, and C,. The
self-correlation is identical to the square of

m,, which is
defined as the standard deviation of the
expression distribution normalized to the
mean expression. These six correlations were
plotted as a function of the IPTG concentra-
tion (Fig. 2). The correlations behave in a
nonintuitive manner. For example, the noise
properties of the upstream gene, reflected in
n, (Fig. 2A), are very different from those of
the downstream gene, reflected in n, (Fig.
2B), even though both genes are repressed
by a single upstream repressor (Fig. 1A). The
correlations C|; and C,; are also dependent
on IPTG concentration (Fig. 2, E and F).
Because RFP is not part of the cascade, one
might expect a correlation that is indepen-
dent of IPTG.

To clarify these issues, we developed a
stochastic model that allows for a systematic
interpretation of the data in terms of the
different components of the noise. The
coefficients of variations and correlations

can be derived from the model analytically,
enabling a direct fit to the entire experimen-
tal data set (/7). Our model is based on the
Langevin approach (7, 12, 13), in which the
deterministic differential equations describ-
ing the dynamics of the system are modified
by adding stochastic terms (6, 14) that reflect
the two sources of noise: (intrinsic fluctua=
{fions) due to low numbers of molecules and
(elobal fluctuations in cellular components
that change the reaction rates for all genes.
Using the resulting expressions (/5) for
the correlations, we can decompose the noise
in each gene into three components: intrinsic
noise in that specific gene, transmitted
intrinsic noise from the upstream genes, and
global noise modulated by the network (Fig.
3A). The intrinsic noise (Fig. 3A, green
arrows) arises mostly from low copy num-
bers of mRNAs (2, 3, 16). The second noise
component, the transmitted intrinsic noise
(Fig. 3A, blue arrows), includes the trans-
mitted fluctuations of each of the upstream
genes in the network and depends on three
factors: the intrinsic noise for that upstream
gene; the effect of temporal averaging (6, 16),
which depends on the lifetimes of the pro-
teins; and the susceptibility of the downstream
gene to the upstream one. We characterize
this susceptibility through the logarithmic gain
H; (16, 17) (Fig. 3B). The logarithmic gain
reflects how the average expression of the
downstream gene j changes as the expression

REPORTS

of the upstream gene i is varied. For example,
the main term in the transmitted intrinsic noise
from gene 1 to gene 2 (Fig. 1A) is proportional
to the squared logarithmic gain /2, (Fig. 3B,
inset). The pronounced peak in A3, occurs at
an IPTG concentration for which the response
of the downstream gene is most sensitive to
changes in the upstream signal. Consistently,
the downstream fluctuations reach a maximum
at this concentration (Fig. 2B) (6). The last
component of the noise reflects the effect of
the global fluctuations. It includes the direct
effect on the gene, the transmitted effect from
the upstream genes (Fig. 3A), and the effect of
the correlated transmission, which depends on
the interactions. The latter illustrates the main
difference between transmitted intrinsic and
transmitted global noise. The different intrinsic
noise sources are uncorrelated, whereas the
global fluctuations arise from the same sources
(Fig. 3A). This means that the transmitted
global noise (Fig. 3A, purple arrows) does not
simply add to the direct global noise (Fig. 3A,
red arrows). Because both fluctuations came
from the same sources, correction terms arise
that depend on the strength (and sign) of the
interaction (/5).

In Fig. 3C, these different noise compo-
nents are shown for gene 2. The intrinsic
component (Fig. 3C, green line) varies as the
inverse of the square root of the mean,
resulting in increased noise at higher IPTG
concentrations. The transmitted intrinsic
component (Fig. 3C, blue line) corresponds
roughly to the square of the logarithmic gain
(Fig. 3B, inset) times the noise in the
upstream gene (Fig. 2A) (/8). The global
noise component (Fig. 3C, red line) is not
constant but rather shows the modulation as
explained above. Thus, the main features of
the noise in this gene are determined by the
network interactions, rather than by its own
intrinsic noise characteristics.

The effect of modulating the global noise is
also demonstrated by the behavior of the cor-
relations between noninteracting genes (Fig. 2,
E and F). A global fluctuation that raises the
expression of RFP will also raise the expres-
sion of YFP and CFP. An increased CFP
expression will result in a decreased YFP ex-
pression by an amount that depends on the
interaction between gene 1 and gene 2 and
hence will vary with IPTG (79). This can be
seen in the expression for the correlations (75).
A consequence of this modulation is that the
correlations C,, and C,, display qualitatively
similar behavior as IPTG is varied (Fig. 2, D
and F). This indicates that C,, is dominated by
the global noise that is transmitted from gene 1
to gene 2. Similarly, the correlation C,, is dom-
inated by the global noise transmitted from
gene 0 to gene 1 and therefore displays a dif-
ferent behavior compared to C,, and C,, (6).

We directly quantified the intrinsic and
extrinsic noise for genes 1 to 3 as a function

www.sciencemag.org SCIENCE VOL 307 25 MARCH 2005
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of the IPTG concentration (Fig. 4, A and B)
by measuring the correlation between CFP
and YFP in constructs in which both
reporters were driven by the same promoter
(3, 5, 6). The total noise was generally
dominated by extrinsic fluctuations. The
experimentally obtained intrinsic and extrin-
sic noise of genes 1 and 2 was consistent
with the predictions of the model.

To probe the predictive power of the sto-
chastic model, we used it to predict the noise
and correlations as the coupling between genes
1 and 2 was altered by adding ATC to the
growth media (6). We compared these pre-
dictions to experimental results. As an ex-
ample, n, and C,, are shown in Fig. 4, C
and D. Both n, and C,, display rich behav-
ior as a function of both the IPTG and ATC
concentrations. As is seen in Fig. 4C, a
small perturbation to the network can trans-
form a maximum in the n,-IPTG curve
(Fig. 4C, black) into a step (red) or even a

minimum (green). These features were
faithfully predicted by the model (Fig. 4D).
Similarly, the model correctly predicts cor-
relation C,, (Fig. 4, E and F) and the other
correlations (6). These experiments demon-
strate that the stochastic model is not only
descriptive but also has predictive power
and can therefore be used as a design tool
for synthetic circuits.

Our results show that the noise in a gene
affects expression fluctuations of its down-
stream genes. This transmitted noise can be
calculated from the interactions between
upstream and downstream genes as quantified
by the logarithmic gains. Thus, it is not
necessary to have low numbers of molecules
to have large fluctuations, because noise could
be transmitted from upstream genes. We show
that the noise has a correlated global component
that is modulated by the network. Thus, even in
a network where all components have low
intrinsic noise, fluctuations can be substantial
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Fig. 4. (A and B) Experimentally determined intrinsic and extrinsic noise as a function of IPTG
(3, 6). The solid lines represent predictions by the stochastic model. (A) Two copies of the lac
promoter are driving CFP and YFP. (B) Two copies of the tet promoter are driving CFP and YFP. The
model parameters used are those in table S1, except for the basal transcription, which was
adjusted to the measured value (6). (C and E) Coefficient of variation n, and correlation C,, as a
function of IPTG concentration in the steady state for different levels of ATC. The solid lines are
guides to the eye. Each experimental data point was obtained from ~1000 single-cell
measurements (23). (D and F) Predictions for n, and C,, from the Langevin model, given the

parameters obtained previously (6).

and the distributions of expression levels
depend on the interactions between genes.
Measuring the correlation between a constitu-
tive gene and a gene embedded in a network
provides a sensitive probe for correlated sources
of noise. This would have been difficult to
reveal by monitoring single genes (2, 4) or two
copies of the same gene (3, 5). Our results
highlight the importance of including stochastic
effects in the study of regulatory networks. This
will be necessary for understanding faithful
signal propagation in natural networks (20) as
well as for designing noise-tolerant synthetic
circuits (21).
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RNA-Dependent Cysteine

Biosynthesis in Archaea
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Several methanogenic archaea lack cysteinyl-transfer RNA (tRNA) synthetase
(CysRS), the essential enzyme that provides Cys-tRNACYs for translation in
most organisms. Partial purification of the corresponding activity from
Methanocaldococcus jannaschii indicated that tRNAs becomes acylated
with O-phosphoserine (Sep) but not with cysteine. Further analyses identified
a class ll-type O-phosphoseryl-tRNA synthetase (SepRS) and Sep-tRNA:Cys-
tRNA synthase (SepCysS). SepRS specifically forms Sep-tRNASYs, which is
then converted to Cys-tRNA®Ys by SepCysS. Comparative genomic analyses
suggest that this pathway, encoded in all organisms lacking CysRS, can also
act as the sole route for cysteine biosynthesis. This was proven for Metha-
nococcus maripaludis, where deletion of the SepRS-encoding gene resulted in
cysteine auxotrophy. As the conversions of Sep-tRNA to Cys-tRNA or to
selenocysteinyl-tRNA are chemically analogous, the catalytic activity of
SepCysS provides a means by which both cysteine and selenocysteine may
have originally been added to the genetic code.

The translation of cysteine codons in mRNA
during protein synthesis requires cysteinyl-
tRNA (Cys-tRNA®Y). Cys-tRNA®Y is nor-
mally synthesized from the amino acid cysteine
and the corresponding tRNA isoacceptors
(tRNAS¥s) in an adenosine triphosphate (ATP)—
dependent reaction catalyzed by cysteinyl-
tRNA synthetase (CysRS). Genes encoding
CysRS, cysS, have been detected in hundreds
of organisms encompassing all three living
domains (7). The only exceptions are certain
methanogenic archaea, the completed genome
sequences of which encode no open reading
frames (ORFs) with obvious homology to known
cysS sequences (/). Because of the discovery
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that the genomes of a number of methanogenic
archaea either lack cysS (Methanocaldococcus
Jjannaschii, Methanothermobacter thermautotro-
phicus, and Methanopyrus kandleri) or can
dispense with it (Methanococcus maripaludis),
the formation of Cys-tRNACYs in these or-
ganisms has been a much studied and increas-
ingly contentious topic (2, 3). A noncognate
aminoacyl-tRNA synthetase [aaRS (4-6)]
and a previously unassigned ORF (7) were
variously implicated in Cys-tRNA®Ys forma-
tion. Recent studies failed to provide conclu-
sive support for either of these routes, leaving
the mechanism of Cys-tRNA®s formation
still in doubt (2).

Previous investigations of archaeal Cys-
tRNACYs biosynthesis have been hampered by
the significant levels of noncognate tRNA
routinely cysteinylated and detected by con-
ventional filter binding assays. This problem
was circumvented with a more stringent assay
of Cys-tRNA®Ys formation: gel-electrophoretic
separation of uncharged tRNA from aminoacyl-
tRNA (aa-tRNA) and subsequent detection of
the tRNA moieties by sequence-specific
probing (8). Given that M. jannaschii is a
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strict anaerobe, and considering that earlier
aerobic purification erroneously identified
prolyl-tRNA synthetase (4, 5), we used
anaerobic conditions for all procedures unless
otherwise indicated. When these procedures
were used to monitor acylation of total M.
maripaludis tRNA by an undialyzed M.
Jannaschii cell-free extract (S-100), tRNACYs
was charged with an amino acid that gave rise
to the same mobility shift (9) exhibited by
standard M. maripaludis Cys-tRNA®Ys gener-
ated by M. maripaludis CysRS (1) (Fig. 1A,
lanes 7 and 8). Further optimization of the
reaction at this stage showed that Zn>* and
ATP were also required for the successful
formation of charged tRNA®Ys. When the S-
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Fig. 1. Acid urea gel electrophoresis and Northern
blot analysis of total M. maripaludis tRNA charged
with M. maripaludis SerRS, dialyzed M. jannaschii
S-100, M. maripaludis CysRS, and M. jannaschii
SepRS in the presence of 20 amino acids (20 AA),
phosphoserine, or a M. jannaschii S-100 cell-free
extract filtrate (Y3). Half of each tRNA sample
was deacylated by mild alkaline hydrolysis (-OH).
The blots were probed with 32P-labeled oligonu-
cleotides complementary to M. maripaludis
tRNASs (A) and M. maripaludis tRNASe (B).
Total M. maripaludis tRNA charged with dialyzed
or undialyzed M. maripaludis AcysS S-100 cell-
free extract (20) in the presence of 20 amino
acids and Na,S, or Sep and NaS (C). The blot
was analyzed with 32P-labeled oligonucleotides
complementary to M. maripaludis tRNA®Ys.
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